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Rock rheology and sharpness of folds in single layers 
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Abstract-Many folds in rocks display angular profiles with sharp hinges and straight limbs. Previous studies by 
many authors have demonstrated that such fold shapes in multilayers result from an intrinsic anisotropy possessed 
by layered or foliated rocks. Our results of two-dimensional finite-element modeling show that folds with sharp 
hinges and straight limbs may also develop in isolated competent layers under suitable rheological conditions. 

Two basic material properties that affect fold shape are non-linearity and anisotropy. Viscous-plastic flow, 
power-law flow (strain-rate softening), and strain softening are three types of non-linear behavior. All lead to folds 
with sharp hinges and straight limbs. Anisotropy has a similar influence on fold geometry. Angularity of folds in 
isolated competent layers increases with increasing non-linearity of the layer or increasing anisotropy of the layer, 
and a quantitative relationship between fold angularity and degree of non-linearity or anisotropy may be 
established. Virtually identical angular fold shapes may be produced by either non-linear or anisotropic layer 
behavior. The strain distribution associated with these shapes is very different, however. For non-linear behavior, 
strain is focused in the fold hinges and minimal on the limbs, and for anisotropic behavior the reverse is the case, 
with shear in the limbs being dominant. These differences suggest that it should be possible to distinguish non-linear 
from anisotropic rheological behavior using layer shape and strain pattern. Copyright 0 1996 Elsevier Science Ltd 

INTRODUCTION 

Fold shape in layered rocks is extremely variable, the 
shapes of most folds lying somewhere in a wide spectrum 
from broad rounded hinge zones with short limbs, 
through sinusoidal forms to angular, narrow-hinge, 
straight-limbed forms (Hudleston 1973, Ramsay & 
Huber 1987, pp. 313-314). The aspect of shape we refer 
to here is the geometric form of individual folded 
surfaces, as distinct from layer shape which is usually 
specified in terms of thickness variations of individual 
layers (Ramsay 1967, pp. 345-351, Hudleston 1973). For 
specific layer configurations the range in shapes becomes 
restricted, and it is clear that the layer configuration, and 
especially layer spacing, has much to do with fold shape 
(e.g. Biot 1965). As a practical measure of fold sharpness 
or angularity, we use a sharpness parameter that reflects 
how curvature is distributed around the fold arc 
(Hudleston & Lan 1994a, Lan & Hudleston 1995). This 
parameter, ki, has a value of 1 for a pure chevron fold and 
0 for a fold consisting of a circular arc (Hudleston & Lan 
1993, 1994a). 

In contrast to the angular fold forms found in many 
multilayers, fold shape in isolated competent layers 
consists typically of rounded outer arcs and the main- 
tenance of an overall parallel layer geometry (Fig. lb). 
This is the case for folding in an isotropic linear viscous or 
an elastic layer (Ramberg 1964, Hudleston & Lan 1993). 
However, angular folds may in fact develop in isolated 
layers under suitable circumstances (Fig. lc). We sum- 
marize in this paper the different ways in which angular 
folds with sharp hinges and straight limbs can be 
produced in single layers, and describe how we can 
distinguish among the factors that cause angularity and 
thus obtain information on the physical conditions of the 
rocks at the time of the folding deformation. 

WAYS OF DEVELOPING ANGULAR FOLDS IN 
ISOLATED LAYERS 

Plastic yielding 

We focus in this paper on angular folds, the most If a stiff layer behaves as a linearly viscous or elastic 
striking examples of which are found in multilayers (Fig. material with a yield strength, there is the possibility of 
la). Chevron folds and kink-bands are the two extreme plastic yield occurring during folding, at the site of 
forms of angular fold, and they have been the subject of greatest stress, which is at the innermost or outermost 
investigation of many workers, by means of theory (e.g. edges of the layer in the fold hinges. Chapple (1969) 
Biot 1965, Cobbold et al. 1971, Johnson & Fletcher demonstrated analytically that this would lead to locali- 
1994), physical experiments (e.g. Cobbold et al. 1971, zation of strain in the hinge and the development of a 
Honea & Johnson 1976, Blay et al. 1977) and numerical sharp fold profile for a viscous-plastic material (Fig. 2). 
modeling (e.g. Latham 1985, Ridley & Casey 1989). It is The degree of sharpness depends on the fraction of the 
clear from this work that fold angularity is favored by a folding history during which plastic yielding occurs, 
mechanical anisotropy that results from the alternation which in turn depends on the ratio of the yield stress to 
of stiff and soft layers in a sequence (e.g. Price & the applied external load and on the history of applica- 
Cosgrove 1990). tion of the load. The fold has a sharper hinge and longer 
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straight limbs if the ratio of end load to critical load, P/P,, 
is large. In the limit it will produce a chevron shape. 

Strain-rate softening 

studied the effect of anisotropy on single-layer folding 
using a two-dimensional finite element code in incom- 
pressible viscous fluids (Hudleston & Lan 1994b). In the 
models, the plane of anisotropy is kept parallel to the 
layering as the folds grow. 

A similar effect to plastic yielding occurs for materials 
with a power-law viscous constitutive relationship. Non- 
linearity arises naturally from flow involving crystal- 
plastic deformation. A non-linear flow results in increas- 
ingly greater strain rates as bending stresses increase, 
again in the inner and outer arcs of the folds at the hinges. 
The higher strain rates lead to larger strains in the hinges 
and less strains in the limbs, resulting in sharper fold 
hinges and straighter limbs. For highly non-linear 
materials, an angular fold profile is formed, as shown 
clearly using numerical models (Hudleston & Lan 1993, 
1994a). The angularity increases systematically as the 
power-law exponent, nL, of the stiff layer is increased 
(Fig. 3, also see Hudleston & Lan 1993, 1994a). We have 
previously shown (Hudleston & Lan 1993, 1994a) that 
fold hinge sharpness, for values of L/h > 10 and for a 
wide range of viscosity ratios, is relatively insensitive to 
viscosity ratio (m), wavelength/thickness (L/h), and fold 
amplitude. This insensitivity allows linear behavior to be 
distinguished from non-linear behavior on the basis of 
fold shape over a wide range of conditions (Hudleston & 
Lan 1994a). It should be emphasized, however, that the 
power-law exponent, nL, also strongly affects the buck- 
ling instability and the dominant wavelength of the folds 
(Fletcher 1974, Smith 1977, Lan & Hudleston 1991). 

As might be expected, the numerical results show that 
increasing the value of A for the stiff layer, or to a lesser 
extent the matrix, leads to more angular folds with 
straighter limbs. Figure 4 shows a set of single-layer 
buckle folds produced in anisotropic linear materials 
with the same initial configurations and deformation 
conditions, except for differences in the value of A of the 
stiff layer and matrix (A = 1, 20, 50). Increasing A also 
increases the buckling instability and, unlike the situation 
for isotropic flow, the instability does not disappear when 
m = 1 (see Cobbold 1976, Lan & Hudleston unpub- 
lished). A more detailed description of the effect of 
anisotropy on folding and the implications for natural 
folds will be addressed elsewhere. 

Inhomogeneity of layering (effective anisotropy) 

Strain softening 

Neurath & Smith (1982) discussed the effect of strain 
softening on folding and boudinage. They demonstrated 
that strain softening is qualitatively and quantitatively 
similar in effect to strain-rate softening in influencing 
dominant wavelength selection and fold amplification 
rates. On the basis of limited numerical modeling we find 
that increasing the degree of strain softening has an 
almost identical influence on fold shape as increasing the 
power-law exponent, nL, of the stiff layer. This is 
consistent with the theoretical predictions of Neurath & 
Smith (1982). 

A stiff layer may be homogenous and anisotropic, as 
discussed in the previous section, but it is possible also for 
an anisotropic ‘stiff layer’ to be made up of several 
isotropic sub-layers of different viscosity, that together 
make the layer effectively anisotropic. Biot (1965 ch. 4) 
has shown that a multilayer has an effective anisotropy 
that depends on the viscosities of the layers making up 
the multilayer, and the proportionate thickness of each 
layer type in the multilayer. For a multilayer consisting of 
alternating layers of viscosity p1 and p2, of fractional 
thicknesses txl and GIN, respectively (Biot 1965, p. 186), 
N=plal +n~c(~ and Q= l/(ai/pr +a2/p2). Such a multi- 
layer of finite thickness embedded in a less stiff matrix will 
behave in a very similar manner to a homogeneous 
anisotropic stiff layer. Figure 5(b) is a fold in a composite 
stiff layer made up of five sub-layers whose viscosities 
alternate between those of the single layer and its matrix 
that form the fold of Fig. 5(a). The angularity due to the 
induced anisotropy of the fold in Fig. 5(b) is clear. Thus, 
it is not necessary for any particular rock type within a 
stack of layers to be anisotropic for the stack in aggregate 
to be so. 

Anisotropy 

An alternative way of modifying deformation in the 
stiff layer and inducing shape changes in folds is by flow 
anisotropy (Price & Cosgrove 1990). Anisotropic flow 
might be expected for rocks with a strong shape or 
crystallographic preferred orientation (Hudleston et al. 

1996). For such flow, viscosity becomes a tensor quantity. 
In a coordinate frame parallel to the plane of anisotropy, 
the viscosity, N, for normal stress is different than that, 
Q, for shear stress (Cobbold 1976). The degree of 
anisotropy is given by the ratio A = N/Q. We have 

It is apparent from the above that angularity of folds in 
isolated competent layers can be achieved in a number of 
different ways. Given natural examples of angular fold 
shapes, can we distinguish among them? This question is 
best addressed by comparing folds of nearly identical 
wavelength/thickness ratio, amplitude, and sharpness 
produced by the various mechanisms. We show three 
such folds in Fig. 6, involving three different types of stiff 
layer behavior in an isotropic, Newtonian matrix. All the 
folds in this figure developed from the same initial value 
of initial amplitude (A,) and initial wavelength/initial 
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folds to show variations in shape. (a) ‘Angular’ folds in a multilayered sequence of siltstones 
nation, Appalachian Valley and Ridge Province, near Pinto, Maryland. (b) ‘Rounded’ fc 
ates ofthe Canyon Creek Formation, Rocky Mountains, near Golden, British Columbia. (c) 

an isolated quartz vein in phyllitic rocks of the Pennine zone, Western Alps, Switzerland. 
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7. Outcrop-scale fold in fine sandstone-siltstone layers in shales of the Trimmer’s Rock Formation, Pennsylvi 
ving fanning of incipient cleavage, especially in the syncline. The average sharpness index, ki, of the four segments of 
is 0.84. This value is inconsistent with linear rock rheology but consistent with nonlinear or anisotropic rheology. 

cleavage pattern is inconsistent with anisotropic rheology of the layer. 
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Fig. 2. Three folds, developed analytically in the v&o-plastic material, 
at a limb dip of 60.5” for L/h = 40 and ratio (= 3) of yielding stress to 
external load. (a) P/PC = 0.99, (b) P/PC = 0.999, (c)P/P= = 0.9999. Here 
P/PC is defined the ratio of end load to critical load (after Chapple 1969, 

fig. 8). 

thickness (Lo/h,). All are relatively straight limbed, and 
all are significantly different in shape from folds devel- 
oped in isotropic Newtonian single layers (cf. Fig. 5a). 
The first example (Fig. 6a) is a single-layer buckle fold 
with nL = 10. The second (Fig. 6b) is a fold produced in a 
homogeneous anisotropic stiff layer, with a ratio of 
normal viscosity, N, to shear viscosity, Q, of 15. In the 
third example (Fig. 6c), the folded stiff layer is composite, 
made up of three stiff layers and two soft layers 
sandwiched between them, all individual layers being 
Newtonian isotropic. The soft layers are one-hundredth 
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Fig. 3. Fold sharpness, described by ki, increases as the value of the 
power-law exponent, nL, of the stiff layer is increased. Three folds 
developed from identical initial sinusoidal perturbations (L,,/b = 12, 
A, = 0.1 h,) and for the same viscosity ratio (m = FL/PM = 100). All at 
S = 50% (layer-parallel shortening). (a) nL = 1, ki = 0.573; (b) nL = 3, 
ki = 0.624; (c) nL = 10, ki = 0.691 (after Hudleston & Lan 1994a, fig. 

b 

Fig. 5. Fold shapes developed from single-layer (a) and multilayer (b) 
models for the same initial parameters (wavelength/thickness, L,/h, = 
12, and amplitude/thickness, A,,&, = 0.1) and rheological parameters 
(nL = 1 and m = 100). All at S = 40%. The corresponding values of the 

11). sharpness index, ki, for individual folds are shown in the figure. 
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Fig. 4. Angular shape of buckle folds varies with an increasing degree 
of anisotropy. All started at the same initial configuration (L,/h, = 12, 
A, = O.lh& and for the same viscosity ratio (m = IOO), and at S = 
40%. (a) A = 1, ki = 0.533; (b) A = 20, ki = 0.767; (c)A = 50, ki = 
0.804. Again, ki is shown beside each fold. A presents ratios of normal 

viscosity, N, to shear viscosity, Q, of the layer and matrix. 

ki=O 
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A=l, nL=lO A=15, nL=l 4~24, nL=l 

Fig. 6. Buckle folds in isolated stiff layers or packages with sharp hinges and straight limbs produced in three different ways. In 
all cases Lo/h0 = 12, A,/hO = 0.1, m = 100 and S = 40%. The matrix is not shown. (a) Single layer for nr = 10 (A = 1); (b) 
Single layer for A = 15 (nL = 1); (c) Multilayer (3 stiff layers, 2 soft layers with m = 100) for nL = 1, &c = 24. The value of 

sharpness index, ki, is also given beside each fold. 

the viscosity of the stiff layers, and the matrix has the 
same viscosity as the soft layers. The effective ratio of 
normal viscosity to shear viscosity for the composite 
layer is about Aee = (N/Q) = 24, based on Biot’s theory 
(Biot 1965, pp. 432-433). 

The finite element grid lines in our models, originally 
forming a rectilinear, orthogonal pattern, can be used in 
Fig. 6 to determine strain (Hudleston & Lan 1994b, 
Treagus et al. 1994). Thus, although the overall fold 
shapes are similar, the manner in which strain is 
accommodated in the three folds in Fig. 6 is very 
different. For non-linear behavior (strain-rate softening), 
strain is focused in the fold hinges, with significant layer 
extension in the outer arcs and shortening in the inner 
arcs; the fold limbs are almost unstained. The mechanism 
is essentially one of tangential-longitudinal strain 
(Ramsay & Huber, 1987~. 457-461). For homogenous 
anisotropic behavior, there is little strain in the hinges, 
and a large shear strain is developed in the limbs. This is 
approaching the flexural flow fold mechanism (Ramsay 
& Huber 1987 p. 445446, Hudleston et al. 1996). For 
composite anisotropic behavior, the strain alternates 
between strong layer-parallel shear in the soft sub-layers 
and tangential-longitudinal strain in the stiff sub-layers. 
The differences among these folds can thus be established 
either by direct measurement of strain or by inference of 
strain from fabric, as for example by the location and 
orientation of cleavage and small-scale faulting and vein 
development (see for example Ramsay & Huber 1987, 
figs. 21.12 and 21.18). 

Viscous-plastic behavior, as described by Chapple 
(1969) and illustrated in Fig. 2, is equivalent to extremely 
non-linear power-law flow, as n + cc in the flow law. 
Thus, there is little practical distinction between these. 
Also, it is in practice probably impossible to distinguish 
strain-softening from strain-rate softening. Anisotropic 
behavior, both in homogeneous and inhomogeneous 

(composite) layers, is however, clearly distinguishable 
from the other mechanisms of producing angular folds. 

We do not have good sets of data on both shape and 
strain for natural folds that allow full practical demon- 
stration of the points made in this paper. We illustrate a 
natural fold in Fig. 7, however, for which we can measure 
shape and make some inference about state of strain, and 
from this we can make some tentative conclusion about 
the rheological state of the rock during folding. The fold 
is in a siltstone in shaly matrix and is viewed parallel to 
the fold axis. The average value of sharpness index, ki, for 
the segments of this fold is about 0.84. This high value 
implies either strongly non-linear rheology or strong 
anisotropy of the stiff layer. The siltstone has a weak or 
incipient spaced cleavage that fans around the fold and is 
strongest in the syncline hinges (Fig. 7). If we make the 
common assumption that this fabric forms perpendicular 
to the maximum finite shortening in the rock, that is it 
forms parallel to the XY plane of the strain ellipsoid, then 
the strain pattern depicted is one more consistent with 
tangential longitudinal strain than flexural flow (cf. Fig. 
6). We thus conclude that for this fold, non-linear 
rheology is the likely cause of the relatively angular fold 
shape. 

We have shown here that angular folds in single layers 
may develop either due to layer non-linearity or due to 
anisotropy. Fold shape allows us to distinguish linear 
homogeneous layer behavior from either of these effects, 
and strain distribution allows us to distinguish non-linear 
from anisotropic layer behavior. Thus, fold shape and 
strain distribution provide a tool to determine possible 
combinations of rheological properties that are able to 
account for a particular natural fold. 
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